Optimal designs for rational regression models

dc.contributor.authorDette, Holger
dc.contributor.authorKiss, Christine
dc.date.accessioned2012-01-30T10:18:27Z
dc.date.available2012-01-30T10:18:27Z
dc.date.issued2012-01-30
dc.description.abstractIn this paper we consider locally optimal designs problems for rational regression models. In the case where the degrees of polynomials in the numerator and denominator differ by at most 1 we identify an invariance property of the optimal designs if the denominator polynomial is palindromic, which reduces the optimization problem by 50%. The results clarify and extend the particular structure of locally c-, D- and E optimal designs for inverse quadratic regression models which have recently been found by Haines (1992) and Dette and Kiss (2009). We also investigate the relation between the D-optimal designs for the Michaelis Menten and EMAX-model from a more general point of view.en
dc.identifier.urihttp://hdl.handle.net/2003/29295
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-3273
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;5/2012en
dc.subjectChebyshev systemsen
dc.subjectoptimal designsen
dc.subjectpalindromic polynomialsen
dc.subjectrational regression modelsen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleOptimal designs for rational regression modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0512_SFB823_Dette_Kiss.pdf
Size:
316.16 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: