Latent Factor Prediction Pursuit for Rank Deficient Regressors

dc.contributor.authorCzogiel, I.de
dc.contributor.authorLuebke, K.de
dc.contributor.authorWeihs, C.de
dc.date.accessioned2005-01-31T08:15:30Z
dc.date.available2005-01-31T08:15:30Z
dc.date.issued2004de
dc.description.abstractIn simulation studies Latent Factor Prediction Pursuit outperformed classical reduced rank regression methods. The algorithm described so far for Latent Factor Prediction Pursuit had two shortcomings. It was only implemented for situations where the explanatory variables were of full colum rank. Also instead of the projection matrix only the regression matrix was calculated. These problems are addressed by a new algorithm which finds the prediction optimal projection.en
dc.format.extent147555 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/20089
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15681
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.subject.ddc310de
dc.titleLatent Factor Prediction Pursuit for Rank Deficient Regressorsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
75_04.pdf
Size:
144.1 KB
Format:
Adobe Portable Document Format
Description:
DNB