Text categorization with support vector machines

dc.contributor.authorJoachims, Thorstende
dc.date.accessioned2004-12-06T12:53:42Z
dc.date.available2004-12-06T12:53:42Z
dc.date.created1997de
dc.date.issued1999-10-29de
dc.description.abstractThis paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety of different learning tasks. Furthermore, they are fully automatic, eliminating the need for manual parameter tuning. The paper is written in English.en
dc.format.extent258648 bytes
dc.format.extent726397 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.issn0943-4135de
dc.identifier.urihttp://hdl.handle.net/2003/2595
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5097
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesForschungsberichte des Lehrstuhls VIII, Fachbereich Informatik der Universität Dortmund ; 23de
dc.subject.ddc004de
dc.titleText categorization with support vector machinesen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
report23_ps.pdf
Size:
252.59 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
report23_ps.ps
Size:
709.37 KB
Format:
Postscript Files