Optimal designs for random effect models with correlated errors with applications in population pharmacokinetics
Loading...
Files
Date
2009-07-16
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We consider the problem of constructing optimal designs for population pharmacokinetics which use random effect models. It is common practice in the design of experiments in such studies to assume uncorrelated errors for each subject. In the present paper a new approach is introduced to determine efficient designs for nonlinear least squares estimation which addresses the problem of correlation between observations corresponding to the same subject. We use asymptotic arguments to derive optimal design densities, and the designs for finite sample size are constructed from the quantiles of the corresponding optimal distribution function. It is demonstrated that compared to the optimal exact designs, whose determination is a hard numerical problem, these designs are very efficient. Alternatively, the designs derived from asymptotic theory could be used as starting designs for the numerical computation of exact optimal designs. Several examples of linear and nonlinear models are presented in order to illustrate the methodology.
Description
Table of contents
Keywords
asymptotic optimal design density, compartmental models, correlated observations, nonlinear least squares estimate, random effect models