Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

Similarity measures for clustering SNP and epidemiological data

dc.contributor.authorSelinski, Silvia
dc.date.accessioned2006-05-04T09:54:51Z
dc.date.available2006-05-04T09:54:51Z
dc.date.issued2006-05-04T09:54:51Z
dc.description.abstractThe issue of suitable similarity measures for a joint consideration of so called SNP data and epidemiological variables arises from the GENICA (Interdisciplinary Study Group on Gene Environment Interaction and Breast Cancer in Germany) casecontrol study of sporadic breast cancer. The GENICA study aims to investigate the influence and interaction of single nucleotide polymorphic (SNP) loci and exogenous risk factors. A single nucleotide polymorphism is a point mutation that is present in at least 1 % of a population. SNPs are the most common form of human genetic variations. In particular, we consider 43 SNP loci in genes involved in the metabolism of hormones, xenobiotics and drugs as well as in the repair of DNA. Assuming that these single nucleotide changes may lead, for instance, to altered enzymes or to a reduced or enhanced amount of the original enzymes – with each alteration alone having minor effects – the aim is to detect combinations of SNPs that under certain environmental conditions increase the risk of sporadic breast cancer. The search for patterns in the present data set may be performed by a variety of clustering and classification approaches. I consider here the problem of suitable 2 measures of proximity of two variables or subjects as an indispensable basis for a further cluster analysis. In the present data situation these measures have to be able to handle different numbers and meaning of categories of nominal scaled data as well as data of different scales. Generally, clustering approaches are a useful tool to detect structures and to generate hypothesis about potential relationships in complex data situations. Searching for patterns in the data there are two possible objectives: the identification of groups of similar objects or subjects or the identification of groups of similar variables within the whole or within subpopulations. The different objectives imply different requirements on the measures of similarity. Comparing the individual genetic profiles as well as comparing the genetic information across subpopulations I discuss possible choices of similarity measures suitable for genetic and epidemiological data, in particular, measures based on the χ2-statistic, Flexible Matching Coefficients and combinations of similarity measures.en
dc.format.extent520598 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/22399
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15898
dc.language.isoen
dc.subjectCluster analysisen
dc.subjectFlexible Matching Coefficienten
dc.subjectGENICAen
dc.subjectMixed similarity coefficienten
dc.subjectPearson's Corrected Coefficient of Contingencyen
dc.subjectSimilarityen
dc.subjectSingle nucleotide polymorphism (SNP)en
dc.subjectSporadic breasten
dc.subject.ddc004
dc.titleSimilarity measures for clustering SNP and epidemiological dataen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr25-06.pdf
Size:
508.4 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: