Skew-symmetric distributions and Fisher information

dc.contributor.authorHallin, Marc
dc.contributor.authorLey, Christophe
dc.date.accessioned2012-09-26T13:02:23Z
dc.date.available2012-09-26T13:02:23Z
dc.date.issued2012-09-26
dc.description.abstractHallin and Ley (2012) investigate and fully characterize the Fisher singularity phenomenon in univariate and multivariate families of skew-symmetric distributions. This paper proposes a refined analysis of the (univariate) Fisher degeneracy problem, showing that it can be more or less severe, inducing n1/4 (“simple singularity”), n1/6 (“double singularity”), or n1/8 (“triple singularity”) consistency rates for the skewness parameter. We show, however, that simple singularity (yielding n1/4 consistency rates), if any singularity at all, is the rule, in the sense that double and triple singularities are possible for generalized skew-normal families only. We also show that higher-order singularities, leading to worse-than-n1/8 rates, cannot occur.en
dc.identifier.urihttp://hdl.handle.net/2003/29644
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-10367
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;37/2012
dc.subjectConsistency ratesen
dc.subjectSingular Fisher informationen
dc.subjectSkewing functionen
dc.subjectSkew-normal distributionsen
dc.subjectSkew-symmetric distributionsen
dc.subjectSymmetric kernelen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleSkew-symmetric distributions and Fisher informationen
dc.title.alternativeThe double sin of the skew-normalen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3712_SFB823_Hallin_Ley.pdf
Size:
222.41 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: