Finite sample efficiency of OLS in linear regression models with long-memory disturbances

dc.contributor.authorKleiber, Christiande
dc.date.accessioned2004-12-06T18:42:45Z
dc.date.available2004-12-06T18:42:45Z
dc.date.issued2000de
dc.description.abstractOLS is as efficient as GLS in the linear regression model with long-memory errors as the long-memory parameter approaches the boundary of the stationarity region, provided the model contains a constant term. This generalizes previous results of Samarov & Taqqu (Journal of Time Series Analysis 9, 1988, pp. 191-200) to the regression case and gives a further example of the `high-correlation asymptotics' of Kr?amer & Baltagi (Economics Letters 50, 1996, pp. 13-17).en
dc.format.extent131586 bytes
dc.format.extent307585 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5039
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14544
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectEfficiency of OLSen
dc.subjectlinear regressionen
dc.subjectlong memoryen
dc.subject.ddc310de
dc.titleFinite sample efficiency of OLS in linear regression models with long-memory disturbancesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2000_34.pdf
Size:
128.5 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr34-00.ps
Size:
300.38 KB
Format:
Postscript Files