Finite sample efficiency of OLS in linear regression models with long-memory disturbances
dc.contributor.author | Kleiber, Christian | de |
dc.date.accessioned | 2004-12-06T18:42:45Z | |
dc.date.available | 2004-12-06T18:42:45Z | |
dc.date.issued | 2000 | de |
dc.description.abstract | OLS is as efficient as GLS in the linear regression model with long-memory errors as the long-memory parameter approaches the boundary of the stationarity region, provided the model contains a constant term. This generalizes previous results of Samarov & Taqqu (Journal of Time Series Analysis 9, 1988, pp. 191-200) to the regression case and gives a further example of the `high-correlation asymptotics' of Kr?amer & Baltagi (Economics Letters 50, 1996, pp. 13-17). | en |
dc.format.extent | 131586 bytes | |
dc.format.extent | 307585 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/2003/5039 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-14544 | |
dc.language.iso | en | de |
dc.publisher | Universitätsbibliothek Dortmund | de |
dc.subject | Efficiency of OLS | en |
dc.subject | linear regression | en |
dc.subject | long memory | en |
dc.subject.ddc | 310 | de |
dc.title | Finite sample efficiency of OLS in linear regression models with long-memory disturbances | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |