Periodic homogenization of Prandtl-Reuss plasticity equations in arbitrary dimension
dc.contributor.author | Schweizer, Ben | |
dc.contributor.author | Veneroni, Marco | |
dc.date.accessioned | 2010-03-12T11:11:14Z | |
dc.date.available | 2010-03-12T11:11:14Z | |
dc.date.issued | 2010-03-12T11:11:14Z | |
dc.description.abstract | We study the n-dimensional wave equation with an elasto-plastic nonlinear stress-strain relation. We investigate the case of heterogeneous materials, i.e. x-dependent parameters that are periodic at the scale n > 0. We study the limit n -> 0 and derive the plasticity equations for the homogenized material. We prove the well-posedness for the original and the effective system with a finite-element approximation. The approximate solutions are used in the homogenization proof which is based on oscillating test function and an adapted version of the div-curl Lemma. | en |
dc.identifier.uri | http://hdl.handle.net/2003/26973 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-8487 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Preprints der Fakultät für Mathematik ; 2010-04 | de |
dc.subject | homogenization | en |
dc.subject | plasticity | en |
dc.subject | two-scale model | en |
dc.subject | differential inclusion | en |
dc.subject | nonlinear wave equation | en |
dc.subject.ddc | 610 | |
dc.title | Periodic homogenization of Prandtl-Reuss plasticity equations in arbitrary dimension | en |
dc.type | Text | |
dc.type.publicationtype | preprint | |
dcterms.accessRights | open access |