Periodic homogenization of Prandtl-Reuss plasticity equations in arbitrary dimension

dc.contributor.authorSchweizer, Ben
dc.contributor.authorVeneroni, Marco
dc.date.accessioned2010-03-12T11:11:14Z
dc.date.available2010-03-12T11:11:14Z
dc.date.issued2010-03-12T11:11:14Z
dc.description.abstractWe study the n-dimensional wave equation with an elasto-plastic nonlinear stress-strain relation. We investigate the case of heterogeneous materials, i.e. x-dependent parameters that are periodic at the scale n > 0. We study the limit n -> 0 and derive the plasticity equations for the homogenized material. We prove the well-posedness for the original and the effective system with a finite-element approximation. The approximate solutions are used in the homogenization proof which is based on oscillating test function and an adapted version of the div-curl Lemma.en
dc.identifier.urihttp://hdl.handle.net/2003/26973
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-8487
dc.language.isoen
dc.relation.ispartofseriesPreprints der Fakultät für Mathematik ; 2010-04de
dc.subjecthomogenizationen
dc.subjectplasticityen
dc.subjecttwo-scale modelen
dc.subjectdifferential inclusionen
dc.subjectnonlinear wave equationen
dc.subject.ddc610
dc.titlePeriodic homogenization of Prandtl-Reuss plasticity equations in arbitrary dimensionen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematicalPreprint-2010-04.pdf
Size:
444.26 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.01 KB
Format:
Item-specific license agreed upon to submission
Description: