Spatio-Temporal Models on the Basis of Innovation Processes and Application to Cancer Mortality Data

dc.contributor.authorSchach, Ulrikede
dc.date.accessioned2004-12-06T18:42:11Z
dc.date.available2004-12-06T18:42:11Z
dc.date.issued2000de
dc.description.abstractThe aim of this paper is to find a modeling approach for spatially and temporally structured data. The spatial distribution is considered to form an irregular lattice with a specified definition of neighborhood. Additional to the spatial component, a temporal autoregressive parameter, and a time trend are modeled within a multivariates Markov process. This Markov process can be expressed on the basis of an innovation process, which allows for statistical inference on various parameters.en
dc.format.extent1590717 bytes
dc.format.extent263402 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5021
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15113
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectconditional autoregressive approachen
dc.subjectinnovation processen
dc.subjectlattice dataen
dc.subjectML-estimationen
dc.subjectspatio-temporal linear modelen
dc.subject.ddc310de
dc.titleSpatio-Temporal Models on the Basis of Innovation Processes and Application to Cancer Mortality Dataen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2000_16.pdf
Size:
257.23 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr16-00.ps
Size:
1.52 MB
Format:
Postscript Files