Spatio-Temporal Models on the Basis of Innovation Processes and Application to Cancer Mortality Data
dc.contributor.author | Schach, Ulrike | de |
dc.date.accessioned | 2004-12-06T18:42:11Z | |
dc.date.available | 2004-12-06T18:42:11Z | |
dc.date.issued | 2000 | de |
dc.description.abstract | The aim of this paper is to find a modeling approach for spatially and temporally structured data. The spatial distribution is considered to form an irregular lattice with a specified definition of neighborhood. Additional to the spatial component, a temporal autoregressive parameter, and a time trend are modeled within a multivariates Markov process. This Markov process can be expressed on the basis of an innovation process, which allows for statistical inference on various parameters. | en |
dc.format.extent | 1590717 bytes | |
dc.format.extent | 263402 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/2003/5021 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15113 | |
dc.language.iso | en | de |
dc.publisher | Universitätsbibliothek Dortmund | de |
dc.subject | conditional autoregressive approach | en |
dc.subject | innovation process | en |
dc.subject | lattice data | en |
dc.subject | ML-estimation | en |
dc.subject | spatio-temporal linear model | en |
dc.subject.ddc | 310 | de |
dc.title | Spatio-Temporal Models on the Basis of Innovation Processes and Application to Cancer Mortality Data | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |