Suitable Design for Electromagnetic Pulse Processes

Loading...
Thumbnail Image

Date

2021-10-14

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Basic conventional production processes, such as arc welding or forming, are more or less thoroughly investigated, reliable process guidelines have been developed and trained engineers are available. This allows them to be put into use usually fast, thus facilitating a wide application. The usage of electromagnetic pulse processes, on the contrary, still lacks a broad propagation. Despite having a history reaching back several decades, these processes are mostly limited to niche applications. Admittedly, theoretical considerations have been made and various experiments have been carried out. However, when a given joining or forming task needs to be realized with electro-magnetic force, a huge invest is necessary even before the first part is made. This involves the design of the machine, especially of the tool coil, as well as the design of the workpieces to be processed. In industrial environmentsthis challenge is tackled step by step: After the theoretical product concept in close collaboration with the customer, numerical and experimental trials are carried out. In many cases, iterations are necessary and both geometry and process are optimized. The experimental trials can be conducted with universal sheet welding tool coils or tube compression tool coils with custom field shapers. This procedure allows keeping the prototyping costs low, but at the same time provides valid information on the feasibility in general, the requirements to the workpieces, the design of the tool coil and the properties of the pulse generator. Subsequently, the tool coil is designed and manufactured according to the prior findings. The pulse generator as modular component is assembled and adapted to the customer’s requirements. The iterative product and process design is the most important phase of the whole procedure, which is in accordance with good project management. It significantly lowers the risk of an expensive project cancellation during the late steps.

Description

Table of contents

Keywords

electromagnetic pulse processes, crimping, welding, electrical mobility

Citation

Collections