Mehler hemigroups and embedding of discrete skew convolution semigroups on simply connected nilpotent Lie groups

dc.contributor.authorBecker-Kern, Peter
dc.contributor.authorHazod, Wilfried
dc.date.accessioned2008-05-19T09:22:01Z
dc.date.available2008-05-19T09:22:01Z
dc.date.issued2008-05-19T09:22:01Z
dc.description.abstractIt is shown how discrete skew convolution semigroups of probability measures on a simply connected nilpotent Lie group can be embedded into Lipschitz continuous semistable hemigroups by means of their generating functionals. These hemigroups are the distributions of increments of additive semi-selfsimilar processes. Considering these on an enlarged space-time group, we obtain Mehler hemigroups corresponding to periodically stationary processes of Ornstein-Uhlenbeck type, driven by certain additive processes with periodically stationary increments. The background driving processes are further represented by generalized Lie-Trotter formulas for convolutions, corresponding to a random integral approach known for finite-dimensional vector spaces.en
dc.identifier.urihttp://hdl.handle.net/2003/25280
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-8135
dc.language.isoende
dc.relation.ispartofseriesPreprints der Fakultät für Mathematik;2008-10de
dc.subjectLipschitz continuous hemigroupen
dc.subjectsemi-selfsimilar additive processen
dc.subjectspacetime groupen
dc.subjectperiodic Ornstein-Uhlenbeck processen
dc.subjectbackground driving processen
dc.subjectgeneralized Lie-Trotter formulaen
dc.subject.ddc510
dc.titleMehler hemigroups and embedding of discrete skew convolution semigroups on simply connected nilpotent Lie groupsen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematicalPreprint10.pdf
Size:
363.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.03 KB
Format:
Item-specific license agreed upon to submission
Description: