Physics-based generative model of curvature sensing peptides; distinguishing sensors from binders

dc.contributor.authorHilten, Niek van
dc.contributor.authorMethorst, Jeroen
dc.contributor.authorVerwei, Nino
dc.contributor.authorRisselada, Herre Jelger
dc.date.accessioned2023-05-05T12:31:49Z
dc.date.available2023-05-05T12:31:49Z
dc.date.issued2023-03-17
dc.description.abstractProteins can specifically bind to curved membranes through curvature-induced hydrophobic lipid packing defects. The chemical diversity among such curvature “sensors” challenges our understanding of how they differ from general membrane “binders” that bind without curvature selectivity. Here, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations (Evo-MD) to resolve the peptide sequences that optimally recognize the curvature of lipid membranes. We subsequently demonstrate how a synergy between Evo-MD and a neural network (NN) can enhance the identification and discovery of curvature sensing peptides and proteins. To this aim, we benchmark a physics-trained NN model against experimental data and show that we can correctly identify known sensors and binders. We illustrate that sensing and binding are phenomena that lie on the same thermodynamic continuum, with only subtle but explainable differences in membrane binding free energy, consistent with the serendipitous discovery of sensors.en
dc.identifier.urihttp://hdl.handle.net/2003/41365
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-23208
dc.language.isoende
dc.relation.ispartofseriesScience advances;9(11)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.subject.rswkMembranproteinede
dc.subject.rswkBiomembrande
dc.subject.rswkMolekulardynamikde
dc.subject.rswkMolekulare Biophysikde
dc.subject.rswkSimulationde
dc.subject.rswkNeuronales Netzde
dc.titlePhysics-based generative model of curvature sensing peptides; distinguishing sensors from bindersen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationNiek van Hilten et al., Physics-based generative model of curvature sensing peptides; distinguishing sensors from binders.Sci. Adv.9,eade8839(2023).DOI:10.1126/sciadv.ade8839de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1126/sciadv.ade8839de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sciadv.ade8839.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: