Comparison between the regression depth method and the support vector machine to approximate the minimum number of misclassifications

dc.contributor.authorChristmann, Andreasde
dc.contributor.authorFischer, Paulde
dc.contributor.authorJoachims, Thorstende
dc.date.accessioned2004-12-06T18:44:06Z
dc.date.available2004-12-06T18:44:06Z
dc.date.issued2000de
dc.description.abstractThe minimum number of misclassifications achievable with afine hyperplanes on a given set of labeled points is a key quantity in both statistics and computational learning theory. However, determining this quantity exactly is essentially NP-hard, c.f. Simon and van Horn (1995). Hence, there is a need to find reasonable approximation procedures. This paper compares three approaches to approximating the minimum number of misclassifications achievable with afine hyperplanes. The first approach is based on the regression depth method of Rousseeuw and Hubert (1999) in linear regression models. We compare the results of the regression depth method with the support vector machine approach proposed by Vapnik (1998), and a heuristic search algorithm.en
dc.format.extent206713 bytes
dc.format.extent392830 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5077
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15190
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subject.ddc310de
dc.titleComparison between the regression depth method and the support vector machine to approximate the minimum number of misclassificationsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2000_53.pdf
Size:
201.87 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr53-00.ps
Size:
383.62 KB
Format:
Postscript Files