Optimal designs for estimating individual coefficients in polynomial regression with no intercept
dc.contributor.author | Dette, Holger | |
dc.contributor.author | Melas, Viatcheslav B. | |
dc.contributor.author | Shpilev, Petr | |
dc.date.accessioned | 2019-07-12T10:43:47Z | |
dc.date.available | 2019-07-12T10:43:47Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In a seminal paper Studden (1968) characterized c-optimal designs in regression models, where the regression functions form a Chebyshev system. He used these results to determine the optimal design for estimating the individual coefficients in a polynomial regression model on the interval [-1; 1] explicitly. In this note we identify the optimal design for estimating the individual coefficients in a polynomial regression model with no intercept (here the regression functions do not form a Chebyshev system). | de |
dc.identifier.uri | http://hdl.handle.net/2003/38137 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-20118 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB823;13/2019 | |
dc.subject | polynomial regression | en |
dc.subject | c-optimal design | en |
dc.subject | Chebyshev system | en |
dc.subject.ddc | 310 | |
dc.subject.ddc | 330 | |
dc.subject.ddc | 620 | |
dc.title | Optimal designs for estimating individual coefficients in polynomial regression with no intercept | en |
dc.type | Text | de |
dc.type.publicationtype | workingPaper | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DP_1319_SFB823_Dette_Melas_Shpilev.pdf
- Size:
- 298.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: