Authors: Suter, Dieter
Börger, Birgit
Bingham, Stephen J.
Gutschank, Jörg
Schweika, Marc-Oliver
Thomson, Andrew J.
Title: Optically detected electron paramagnetic resonance by microwave modulated magnetic circular dichroism
Language (ISO): en
Abstract: Electron paramagnetic resonance (EPR) can be detected optically, with a laser beam propagating perpendicular to the static magnetic field. As in conventional EPR, excitation uses a resonant microwave field. The detection process can be interpreted as coherent Raman scattering or as a modulation of the laser beam by the circular dichroism of the sample oscillating at the microwave frequency. The latter model suggests that the signal should show the same dependence on the optical wavelength as the MCD signal. We check this for two different samples [cytochrome c-551, a metalloprotein, and ruby (Cr3 + :Al2O3)]. In both cases, the observed wavelength dependence is almost identical to that of the MCD signal. A quantitative estimate of the amplitude of the optically detected EPR signal from the MCD also shows good agreement with the experimental results.
Publishers Link:
Issue Date: 1999-11-08
Provenance: American Institute of Physics
Citation: Birgit Börger, Stephen J. Bingham, Jörg Gutschank, Marc-Oliver Schweika, Dieter Suter, and Andrew J. Thomson: Optically Detected Electron Paramagnetic Resonance by Microwave Modulated Magnetic Circular Dichroism', In: J. Chem. Phys. 111, 8565-8568 (1999).
Appears in Collections:Suter, Dieter Prof. Dr.

Files in This Item:
There are no files associated with this item.

This item is protected by original copyright

Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.