Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuchsteiner, Jannis-
dc.date.accessioned2014-09-05T11:36:00Z-
dc.date.available2014-09-05T11:36:00Z-
dc.date.issued2014-09-05-
dc.identifier.urihttp://hdl.handle.net/2003/33609-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15631-
dc.description.abstractLet (X_k)k>=1 be a Gaussian long-range dependent process with EX_1 = 0, EX^2_1 1 = 1 and covariance function r(k) = k^(-D)L(k). For any measurable function G let (Y_k)k>= 1 = (G(X_k))k>= 1. We study the asymptotic behaviour of the associated sequential empirical process (R_N(x,t)) with respect to a weighted sup-norm ||*||w. We show that, after an appropriate normalization, (R_N(x,t)) converges weakly in the space of c adl ag functions with nite weighted norm to a Hermite process.en
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;29/2014en
dc.subjectsequential empirical processen
dc.subjectmodified functional delta methoden
dc.subjectweighted normen
dc.subjectlong-range dependenceen
dc.subject.ddc310-
dc.subject.ddc330-
dc.subject.ddc620-
dc.titleWeak convergence of the weighted sequential empirical process of some long-range dependent dataen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access-
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_2914_SFB823_Buchsteiner.pdfDNB318.24 kBAdobe PDFView/Open


This item is protected by original copyright



This item is protected by original copyright rightsstatements.org