Authors: Schweizer, Ben
Urban, Maik
Title: Effective Maxwell’s equations in general periodic microstructures
Language (ISO): en
Abstract: We study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period η > 0; we study the behaviour of solutions ( E^η ,H^η ) in the limit η → 0 and derive an effective system. In geometries with a non-trivial topology, the limit system implies that certain components of the effective fields vanish. We identify the corresponding effective system and can predict, from topological properties of the meta-material, whether or not it permits the propagation of waves.
Subject Headings: Maxwell’s equations
homogenization
diffraction
periodic structure
meta-material
Subject Headings (RSWK): Maxwellsche Gleichungen
Homogenisierungsmethode
Beugung
Mikrostruktur
URI: http://hdl.handle.net/2003/35904
http://dx.doi.org/10.17877/DE290R-17928
Issue Date: 2017-03-15
Appears in Collections:Schweizer, Ben Prof. Dr.
Preprints der Fakultät für Mathematik

Files in This Item:
File Description SizeFormat 
Preprint 2017-01.pdfDNB591.03 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.