Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Schweizer, Ben | - |
dc.contributor.author | Urban, Maik | - |
dc.date.accessioned | 2017-03-28T09:15:49Z | - |
dc.date.available | 2017-03-28T09:15:49Z | - |
dc.date.issued | 2017-03-15 | - |
dc.identifier.uri | http://hdl.handle.net/2003/35904 | - |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-17928 | - |
dc.description.abstract | We study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period η > 0; we study the behaviour of solutions ( E^η ,H^η ) in the limit η → 0 and derive an effective system. In geometries with a non-trivial topology, the limit system implies that certain components of the effective fields vanish. We identify the corresponding effective system and can predict, from topological properties of the meta-material, whether or not it permits the propagation of waves. | en |
dc.language.iso | en | - |
dc.subject | Maxwell’s equations | en |
dc.subject | homogenization | en |
dc.subject | diffraction | en |
dc.subject | periodic structure | en |
dc.subject | meta-material | en |
dc.subject.ddc | 610 | - |
dc.title | Effective Maxwell’s equations in general periodic microstructures | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | en |
dc.subject.rswk | Maxwellsche Gleichungen | de |
dc.subject.rswk | Homogenisierungsmethode | de |
dc.subject.rswk | Beugung | de |
dc.subject.rswk | Mikrostruktur | de |
dcterms.accessRights | open access | - |
Appears in Collections: | Preprints der Fakultät für Mathematik Schweizer, Ben Prof. Dr. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Preprint 2017-01.pdf | DNB | 591.03 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.