Authors: | Schweizer, Ben Urban, Maik |
Title: | Effective Maxwell’s equations in general periodic microstructures |
Language (ISO): | en |
Abstract: | We study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period η > 0; we study the behaviour of solutions ( E^η ,H^η ) in the limit η → 0 and derive an effective system. In geometries with a non-trivial topology, the limit system implies that certain components of the effective fields vanish. We identify the corresponding effective system and can predict, from topological properties of the meta-material, whether or not it permits the propagation of waves. |
Subject Headings: | Maxwell’s equations homogenization diffraction periodic structure meta-material |
Subject Headings (RSWK): | Maxwellsche Gleichungen Homogenisierungsmethode Beugung Mikrostruktur |
URI: | http://hdl.handle.net/2003/35904 http://dx.doi.org/10.17877/DE290R-17928 |
Issue Date: | 2017-03-15 |
Appears in Collections: | Preprints der Fakultät für Mathematik Schweizer, Ben Prof. Dr. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Preprint 2017-01.pdf | DNB | 591.03 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.