Authors: Begum, Naheed
Siddiqa, Sadia
Sulaiman, Muhammad
Islam, Saeed
Hossain, Mohammad Anwar
Gorla, Rama Subba Reddy
Title: Numerical Solutions for Gyrotactic Bioconvection of Dusty Nanofluid along a Vertical Isothermal Surface
Language (ISO): en
Abstract: The aim of present paper is to establish the detailed numerical results for bioconvection boundary-layer flow of two-phase dusty nanofluid. The dusty fluid contains gyrotactic microorganisms along an isothermally heated vertical wall. The physical mechanisms responsible for the slip velocity between the dusty fluid and nanoparticles, such as thermophoresis and Brownian motion, are included in this study. The influence of the dusty nanofluid on heat transfer and flow characteristics are investigated in this paper. The governing equations for two-phase model are non-dimensionalized and then solved numerically via twopoint finite difference method together with the tri-diagonal solver. Results are presented graphically for wall skin friction coefficient, rate of heat transfer, velocity and temperature profiles and streamlines and isotherms. To ensure the accuracy, the computational results are compared with available data and are found in good agreement. The key observation from present analysis is that the mass concentration parameter, D_ρ, extensively promotes the rate of heat transfer, Q_w, whereas, the wall skin friction coefficient, τ_w, is reduced by loading the dust parameters in water based dusty nanofluid.
Subject Headings: nanofluid
bioconvection,
gyrotactic microorganisms
dusty fluid
two-phase
isothermal surface
URI: http://hdl.handle.net/2003/35966
http://dx.doi.org/10.17877/DE290R-17989
Issue Date: 2017-05
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 568.pdfDNB7.57 MBAdobe PDFView/Open


This item is protected by original copyright



This item is protected by original copyright rightsstatements.org