Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuelmann, Hannes-
dc.contributor.authorGeveler, Markus-
dc.contributor.authorTurek, Stefan-
dc.date.accessioned2018-02-27T10:09:26Z-
dc.date.available2018-02-27T10:09:26Z-
dc.date.issued2018-02-
dc.identifier.issn2190-1767-
dc.identifier.urihttp://hdl.handle.net/2003/36777-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18778-
dc.description.abstractIn an unconventional approach to combining the very successful Finite Element Methods (FEM) for PDE-based simulation with techniques evolved from the domain of Machine Learning (ML) we employ approximate inverses of the system matrices generated by neural networks in the linear solver. We demonstrate the success of this solver technique on the basis of the Poisson equation which can be seen as a fundamental PDE for many practically relevant simulations [Turek 1999]. We use a basic Richardson iteration applying the approximate inverses generated by fully connected feedforward multilayer perceptrons as preconditioners.en
dc.language.isoen-
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;581-
dc.subjectmachine learningen
dc.subjectFEMen
dc.subjectpreconditioningen
dc.subjectSPAIen
dc.subject.ddc610-
dc.titleOn the Prospects of Using Machine Learning for the Numerical Simulation of PDEs: Training Neural Networks to Assemble Approximate Inversesen
dc.typeText-
dc.type.publicationtypepreprint-
dc.subject.rswkFinite-Elemente-Methodede
dc.subject.rswkMaschinelles Lernende
dc.subject.rswkSchwach besetzte Matrixde
dc.subject.rswkIterationde
dcterms.accessRightsopen access-
eldorado.secondarypublicationfalse-
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 581.pdfDNB260.16 kBAdobe PDFView/Open


This item is protected by original copyright



This item is protected by original copyright rightsstatements.org