Authors: Kreuzer, Christian
Veeser, Andreas
Title: Convergence of adaptive finite element methods with error-dominated oscillation
Language (ISO): en
Abstract: Recently, we devised an approach to a posteriori error analysis, which clarifies the role of oscillation and where oscillation is bounded in terms of the current approximation error. Basing upon this approach, we derive plain convergence of adaptive linear finite elements approximating the Poisson problem. The result covers arbritray H^-1-data and characterizes convergent marking strategies.
Subject Headings (RSWK): Finite-Elemente-Methode
Adaptives Verfahren
URI: http://hdl.handle.net/2003/36843
http://dx.doi.org/10.17877/DE290R-18844
Issue Date: 2018-03
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 583.pdfDNB301.08 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.