Autor(en): van Delft, Anne
Eichler, Michael
Titel: A note on Herglotz’s theorem for time series on function spaces
Sprache (ISO): en
Zusammenfassung: In this article, we prove Herglotz’s theorem for Hilbert-valued time series. This requires the notion of an operator-valued measure, which we shall make precise for our setting. Herglotz’s theorem for functional time series allows to generalize existing results that are central to frequency domain analysis on the function space. In particular, we use this result to prove the existence of a functional Cramér representation of a large class of processes, including those with jumps in the spectral distribution and long-memory processes. We furthermore obtain an optimal finite dimensional reduction of the time series under weaker assumptions than available in the literature. The results of this paper therefore enable Fourier analysis for processes of which the spectral density operator does not necessarily exist.
Schlagwörter: functional data analysis
time series
spectral analysis
URI: http://hdl.handle.net/2003/38207
http://dx.doi.org/10.17877/DE290R-20186
Erscheinungsdatum: 2019
Enthalten in den Sammlungen:Sonderforschungsbereich (SFB) 823

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
DP_2019_SFB823_vanDelft_Eichler.pdfDNB334.96 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.