Authors: Wegner, Nils
Kotzem, Daniel
Wessarges, Yvonne
Emminghaus, Nicole
Hoff, Christian
Tenkamp, Jochen
Hermsdorf, Jörg
Overmeyer, Ludger
Walther, Frank
Title: Corrosion and corrosion fatigue properties of additively manufactured magnesium alloy WE43 in comparison to titanium alloy Ti-6Al-4V in physiological environment
Language (ISO): en
Abstract: Laser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.
Subject Headings: Additive manufacturing
Laser powder bed fusion (L-PBF)
Magnesium alloy WE43
Titanium alloy Ti-6Al-4V
In vitro fatigue
Subject Headings (RSWK): Rapid Prototyping <Fertigung>
Issue Date: 2019-09-07
Rights link:
Appears in Collections:Fachgebiet Werkstoffprüftechnik

Files in This Item:
File Description SizeFormat 
materials-12-02892.pdf83.8 MBAdobe PDFView/Open

This item is protected by original copyright

This item is licensed under a Creative Commons License Creative Commons