Full metadata record
DC FieldValueLanguage
dc.contributor.authorKreuzer, Christian-
dc.contributor.authorVerfürth, Rüdiger-
dc.contributor.authorZanotti, Pietro-
dc.date.accessioned2020-03-05T14:29:14Z-
dc.date.available2020-03-05T14:29:14Z-
dc.date.issued2020-02-
dc.identifier.issn2190-1767-
dc.identifier.urihttp://hdl.handle.net/2003/39037-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20956-
dc.description.abstractWe approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the discretization is well-defined for any load which is admissible for the continuous problem and it also provides classical quasioptimal estimates for the sum of velocity and pressure errors. The key design principle is a careful discretization of the load involving a linear operator, which maps discontinuous Galerkin test functions onto conforming ones thereby preserving the discrete divergence and certain moment conditions on faces and elements.en
dc.language.isoen-
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;625-
dc.subject.ddc610-
dc.titleQuasi-optimal and pressure robust discretizations of the stokes equations by moment- and divergence-preserving operatorsen
dc.typeText-
dc.type.publicationtypepreprint-
dcterms.accessRightsopen access-
eldorado.secondarypublicationfalse-
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 625.pdfDNB587.07 kBAdobe PDFView/Open


This item is protected by original copyright



Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.