Autor(en): Reichold, Karsten
Jentsch, Carsten
Titel: Accurate and (almost) tuning parameter free inference in cointegrating regressions
Sprache (ISO): en
Zusammenfassung: Tuning parameter choices complicate statistical inference in cointegrating regressions and affect finite sample distributions of test statistics. As commonly used asymptotic theory fails to capture these effects, tests often suffer from severe size distortions. We propose a novel self-normalized test statistic for general linear hypotheses, which avoids the choice of tuning parameters. Its limiting null distributions is nonstandard, but simulating asymptotically valid critical values is straightforward. To further improve the performance of the test in small to medium samples, we employ the vector autoregressive sieve bootstrap to construct critical values. To show its consistency, we establish a bootstrap invariance principle result under conditions that go beyond the assumptions commonly imposed in the literature. Simulation results demonstrate that our new test outperforms competing approaches, as it has good power properties and is considerably less prone to size distortions.
Schlagwörter: bootstrap invariance principle
vector autoregressive sieve bootstrap
self-normalization
inference
IM-OLS
cointegration
Schlagwörter (RSWK): Bootstrap-Statistik
Inferenzstatistik
Kointegration
URI: http://hdl.handle.net/2003/39964
http://dx.doi.org/10.17877/DE290R-21854
Erscheinungsdatum: 2020
Enthalten in den Sammlungen:Sonderforschungsbereich (SFB) 823

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
DP_3320_SFB823_Reichold_Jentsch.pdfDNB729.71 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.