Authors: May, Sandra
Streitbuerger, Florian
Title: DoD Stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension
Language (ISO): en
Abstract: In this work, we present the Domain of Dependence (DoD) stabilization for sys tems of hyperbolic conservation laws in one space dimension. The base scheme uses a method of lines approach consisting of a discontinuous Galerkin scheme in space and an explicit strong stability preserving Runge-Kutta scheme in time. When applied on a cut cell mesh with a time step length that is appropriate for the size of the larger background cells, one encounters stability issues. The DoD stabilization con sists of penalty terms that are designed to address these problems by redistributing mass between the inflow and outflow neighbors of small cut cells in a physical way. For piecewise constant polynomials in space and explicit Euler in time, the stabi lized scheme is monotone for scalar problems. For higher polynomial degrees p, our numerical experiments show convergence orders of p + 1 for smooth flow and robust behavior in the presence of shocks.
URI: http://hdl.handle.net/2003/40353
http://dx.doi.org/10.17877/DE290R-22228
Issue Date: 2021-07
Appears in Collections:Ergebnisberichte des Instituts für Angewandte Mathematik

Files in This Item:
File Description SizeFormat 
Ergebnisbericht Nr. 646.pdfDNB540.97 kBAdobe PDFView/Open


This item is protected by original copyright



Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.