A scalar product for copulas
dc.contributor.author | Siburg, Karl Friedrich | |
dc.contributor.author | Stoimenov, Pavel A. | |
dc.date.accessioned | 2007-10-25T11:55:28Z | |
dc.date.available | 2007-10-25T11:55:28Z | |
dc.date.issued | 2007-10-25T11:55:28Z | |
dc.description.abstract | We introduce a scalar product for n-dimensional copulas, based on the Sobolev scalar product for W 1,2 -functions. The corresponding norm has quite remarkable properties and provides a new geometric framework for copulas. We show that, in the bivariate case, it measures invertibility properties with respect to the ∗-product for copulas defined by Darsow et al. The unique copula of minimal norm is the null element for the ∗-multiplication, whereas the copulas of maximal norm are precisely the invertible elements. | en |
dc.identifier.uri | http://hdl.handle.net/2003/24794 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15316 | |
dc.language.iso | en | de |
dc.subject | Copula | en |
dc.subject | Scalar product | en |
dc.subject | Sobolev space | en |
dc.subject.ddc | 004 | |
dc.title | A scalar product for copulas | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |