Convergence of adaptive C0-interior penalty Galerkin method for the biharmonic problem

dc.contributor.authorDominicus, Alexander
dc.contributor.authorGaspoz, Fernando
dc.contributor.authorKreuzer, Christian
dc.date.accessioned2019-01-24T08:51:42Z
dc.date.available2019-01-24T08:51:42Z
dc.date.issued2019-01
dc.description.abstractWe develop a basic convergence analysis for an adaptive C0IPG method for the Biharmonic problem which provides convergence without rates for all practically relevant marking strategies and all penalty parameters assuring coercivity of the method. The analysis hinges on embedding properties of (broken) Sobolev and BV spaces, and the construction of a suitable limit space. In contrast to the convergence result of adaptive discontinuous Galerkin methods for elliptic PDEs, by Kreuzer and Georgoulis, here we have to deal with the fact that the Lagrange finite element spaces may possibly contain no proper C1-conforming subspace. This prevents from a straight forward generalisation and requires the development of some new key technical tools.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/37889
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19876
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;593
dc.subjectadaptive discontinuous Galerkin methodsen
dc.subjectquadratic C0-interior penalty methoden
dc.subjectconvergenceen
dc.subjectbiharmonic problemen
dc.subject.ddc610
dc.titleConvergence of adaptive C0-interior penalty Galerkin method for the biharmonic problemen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 593.pdf
Size:
501.54 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: