Gradient-based limiting and stabilization of continuous Galerkin methods

dc.contributor.authorKuzmin, Dmitri
dc.date.accessioned2018-07-31T07:09:15Z
dc.date.available2018-07-31T07:09:15Z
dc.date.issued2018-07
dc.description.abstractIn this paper, we stabilize and limit continuous Galerkin discretizations of a linear transport equation using an algebraic approach to derivation of artificial diffusion operators. Building on recent advances in the analysis and design of edge-based algebraic flux correction schemes for singularly perturbed convection-diffusion problems, we derive algebraic stabilization operators that generate nonlinear high-order stabilization in smooth regions and enforce discrete maximum principles everywhere. The correction factors for antidiffusive element or edge contributions are defined in terms of nodal gradients that vanish at local extrema. The proposed limiting strategy is linearity-preserving and provides Lipschitz continuity of constrained terms. Numerical examples are presented for two-dimensional test problems.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/37077
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19074
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;589
dc.subject.ddc610
dc.subject.rswkhyperbolic conservation lawsen
dc.subject.rswkfinite element methodsen
dc.subject.rswkdiscrete maximum principlesen
dc.subject.rswkalgebraic flux correctionen
dc.subject.rswklinearity preservationen
dc.titleGradient-based limiting and stabilization of continuous Galerkin methodsen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 589.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: