Subdomain-based exponential integrators for quantum Liouville-type equations

dc.contributor.authorSchulz, Lukas
dc.contributor.authorInci, B.
dc.contributor.authorPech, M.
dc.contributor.authorSchulz, Dirk
dc.date.accessioned2023-03-02T10:37:27Z
dc.date.available2023-03-02T10:37:27Z
dc.date.issued2021-10-15
dc.description.abstractIn order to describe quantum mechanical effects, the use of the von-Neumann equation is apparent. In this work, we present a unified numerical framework so that the von-Neumann equation in center-of-mass coordinates leads to a Quantum Liouville-type equation when choosing a suitable basis. In particular, the proposed approach can be related to the conventional Wigner equation when a plane wave basis is used. The drawback of the numerical methods is the high computational cost. Our presented approach is extended to allow reducing the dimension of the basis, which leads to a computationally efficient and accurate subdomain approach. Not only the steady-state behavior is of interest, but also the dynamic behavior. In order to solve the time-dependent case, suitable approximation methods for the time-dependent exponential integrator are necessary. For this purpose, we also investigate approximations of the exponential integrator based on Faber polynomials and Krylov methods. In order to evaluate and justify our approach, various test cases, including a resonant tunnel diode as well as a double-gate field-effect transistor, are investigated and validated for the stationary and the dynamic device behavior.en
dc.identifier.urihttp://hdl.handle.net/2003/41275
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-23117
dc.language.isoende
dc.relation.ispartofseriesJournal of computational electronics;Vol. 20. 2022, Issue 6, pp 2070-2090
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectComputational nanotechnologyen
dc.subjectTransient quantum transporten
dc.subjectWigner transport equationen
dc.subjectNumerical methodsen
dc.subjectTime integration techniquesen
dc.subjectExponential integratorsen
dc.subject.ddc620
dc.subject.rswkComputational nanotechnologyde
dc.subject.rswkWigner-Gleichungde
dc.subject.rswkNumerisches Verfahrende
dc.subject.rswkVon-Neumann-Gleichungde
dc.subject.rswkLiouville-Gleichungde
dc.subject.rswkKrylov-Verfahrende
dc.titleSubdomain-based exponential integrators for quantum Liouville-type equationsen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationJournal of computational electronics. Vol. 20. 2022, Issue 6, pp 2070-2090en
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s10825-021-01797-2de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10825-021-01797-2.pdf
Size:
5.84 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: