On the threshold condition for Dörfler marking
dc.contributor.author | Diening, Lars | |
dc.contributor.author | Kreuzer, Christian | |
dc.date.accessioned | 2020-03-30T09:43:18Z | |
dc.date.available | 2020-03-30T09:43:18Z | |
dc.date.issued | 2020-03 | |
dc.description.abstract | It is an open question if the threshold condition θ < θ_* for the Dörfler marking parameter is necessary to obtain optimal algebraic rates of adaptive finite element methods. We present a (non-PDE) example fitting into the common abstract convergence framework (axioms of adaptivity) and which is potentially converging with exponential rates. However, for Dörfler marking θ > θ_* the algebraic converges rate can be made arbitrarily small. | en |
dc.identifier.issn | 2190-1767 | |
dc.identifier.uri | http://hdl.handle.net/2003/39072 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-20991 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Ergebnisberichte des Instituts für Angewandte Mathematik;628 | |
dc.subject | adaptive finite element methods | en |
dc.subject | Dörfler marking | en |
dc.subject | convergence | en |
dc.subject | optimal complexity | en |
dc.subject.ddc | 610 | |
dc.title | On the threshold condition for Dörfler marking | en |
dc.type | Text | |
dc.type.publicationtype | preprint | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false |