Constructing irregular histograms by penalized likelihood

dc.contributor.authorGather, Ursula
dc.contributor.authorMildenberger, Thoralf
dc.contributor.authorRozenholc, Yves
dc.date.accessioned2009-04-30T10:42:23Z
dc.date.available2009-04-30T10:42:23Z
dc.date.issued2009-04-30T10:42:23Z
dc.description.abstractWe propose a fully automatic procedure for the construction of irregular histograms. For a given number of bins, the maximum likelihood histogram is known to be the result of a dynamic programming algorithm. To choose the number of bins, we propose two different penalties motivated by recent work in model selection by Castellan [1] and Massart [2]. We give a complete description of the algorithm and a proper tuning of the penalties. Finally, we compare our procedure to other existing proposals for a wide range of different densities and sample sizes. [1] Castellan, G., 1999. Modified Akaike's criterion for histogram density estimation. Technical Report 99.61, Université de Paris-Sud. [2] Massart, P., 2007. Concentration inequalities and model selection. Lecture Notes in Mathematics Vol. 1896, Springer, New York.en
dc.identifier.urihttp://hdl.handle.net/2003/26096
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-587
dc.language.isoende
dc.subjectdensity estimationen
dc.subjectdynamic programmingen
dc.subjectirregular histogramen
dc.subjectpenalized likelihooden
dc.subject.ddc004
dc.titleConstructing irregular histograms by penalized likelihooden
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr04-09.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.94 KB
Format:
Item-specific license agreed upon to submission
Description: