Central limit theorems for multivariate Bessel processes in the freezing regime

dc.contributor.authorVoit, Michael
dc.date.accessioned2019-01-08T13:37:58Z
dc.date.available2019-01-08T13:37:58Z
dc.date.issued2018-11
dc.description.abstractMultivariate Bessel processes (X_(t,k) )t≥0 are classified via associated root systems and multiplicity constants k ≥ 0. They describe the dynamics of interacting particle systems of Calogero-Moser-Sutherland type. Recently, Andraus, Katori, and Miyashita derived some weak laws of large numbers for X_(t,k) for fixed times t > 0 and k→∞. In this paper we derive associated central limit theorems for the root systems of types A, B and D in an elementary way. In most cases, the limits will be normal distributions, but in the B-case there are freezing limits where distributions associated with the root system A or one-sided normal distributions on half-spaces appear. Our results are connected to central limit theorems of Dumitriu and Edelman for β-Hermite and β-Laguerre ensembles.en
dc.identifier.urihttp://hdl.handle.net/2003/37862
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19849
dc.language.isoen
dc.subjectinteracting particle systemsen
dc.subjectCalogero-Moser-Sutherland modelsen
dc.subjectcentral limit theoremsen
dc.subjectHermite ensemblesen
dc.subjectLaguerre ensemblesen
dc.subjectDyson Brownian motionen
dc.subject.ddc610
dc.titleCentral limit theorems for multivariate Bessel processes in the freezing regimeen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2018_06.pdf
Size:
399.68 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: