Localized Linear Discriminant Analysis

dc.contributor.authorCzogiel, Irina
dc.contributor.authorLuebke, Karsten
dc.contributor.authorWeihs, Claus
dc.contributor.authorZentgraf, Marc
dc.date.accessioned2006-02-27T14:17:12Z
dc.date.available2006-02-27T14:17:12Z
dc.date.issued2006-02-27T14:17:12Z
dc.description.abstractAbstract. Despite its age, the Linear Discriminant Analysis performs well even in situations where the underlying premises like normally distributed data with constant covariance matrices over all classes are not met. It is, however, a global technique that does not regard the nature of an individual observation to be classified. By weighting each training observation according to its distance to the observation of interest, a global classifier can be transformed into an observation specific approach. So far, this has been done for logistic discrimination. By using LDA instead, the computation of the local classifier is much simpler. Moreover, it is ready for applications in multi-class situations.en
dc.format.extent2042252 bytes
dc.format.extent300018 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/22206
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14249
dc.language.isoen
dc.subjectClassificationen
dc.subjectLDAen
dc.subjectLocal modelsen
dc.subject.ddc004
dc.titleLocalized Linear Discriminant Analysisen
dc.typeText
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
tr10-06.ps
Size:
1.95 MB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
tr10-06.pdf
Size:
292.99 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: