QSAR study of anti-prion activity of 2-aminothiazoles
Loading...
Date
2012-11-15
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
2-aminothiazoles is a class of compounds capable of treating life-threatening prion diseases. QSAR studies on a set of forty-seven 2-aminothiazole derivatives possessing anti-prion activity were performed using multivariate analysis, which comprised of multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM). The results indicated
that MLR afforded reasonable performance with a correlation coefficient (r) and root
mean squared error (RMSE) of 0.9073 and 0.2977, respectively, as obtained from leave-oneout cross-validation (LOO-CV). More sophisticated learning methods such as SVM provided models with the highest accuracy with r and RMSE of 0.9471 and 0.2264, respectively, while ANN gave reasonable performance with r and RMSE of 0.9023 and 0.3043, respectively, as obtained LOO-CV calculations. Descriptor analysis from the regression coefficients of the MLR model suggested that compounds should be asymmetrical molecule with low propensity
to form hydrogen bonds and high frequency of N content at topological distance 02 in order to provide good activities. Insights from QSAR studies is anticipated to be useful in the design of novel derivatives based on the 2-aminothiazole scaffold as potent therapeutic agents against
prion diseases.
Description
Table of contents
Keywords
2-aminothiazole, anti-prion, artificial neural network, multiple linear regression, QSAR, support vector machine