Determination of the relationship between doxorubicin resistance and Wnt signaling pathway in HeLa and K562 cell lines

Abstract

Activation of the Wnt signaling in some types of cancer and its relation with chemotherapy resistance is a very interesting issue that has been emphasized in recent years. Although, it is known that increase in the activity of β-catenin is important in blast transformation and drug resistance, the underlying mechanisms are still unclear. In this study, changes in the expression levels of 186 genes that are thought to be important in drug resistance and Wnt signaling pathways were determined by using qPCR method in doxorubicin-sensitive and –resistant HeLa and K562 cell lines. It has been observed that the genes involved in the Wnt signaling pathways are involved in more changes in HeLa/Dox cells (36 genes) than in the K562/Dox cells (17 genes). Genes important for the development of cancer resistance have been found to be significantly different in expression levels of 18 genes in HeLa/Dox cells and 20 genes in K562/Dox cells. In both cell lines, the expression of ABCB1 gene was significantly increased to 160 and 103 fold, respectively. However, despite the resistance to same drug in HeLa and K562 cell lines, it appears that the expression levels of different oncogenes and genes involved in Wnt signaling pathways have been altered. It has been found that although resistance develops to the same drug in both cell lines, the expression levels of different genes have changed. If functional analysis of these genes is performed on patient population groups, these molecules may become candidates for novel therapeutic target molecules.

Description

Table of contents

Keywords

Wnt signaling pathway, Drug resistance, Cervical cancer, Chronic myelogenous leukemia, Gene expression

Citation