A law of large numbers for the power variation of fractional Lévy processes
dc.contributor.author | Glaser, Sven | |
dc.date.accessioned | 2013-08-30T15:07:42Z | |
dc.date.available | 2013-08-30T15:07:42Z | |
dc.date.issued | 2013-08-30 | |
dc.description.abstract | We prove a law of large numbers for the power variation of an integrated fractional process in a pure jump model. This yields consistency of an estimator for the integrated volatility where we are no longer restricted to a Gaussian model. | en |
dc.identifier.uri | http://hdl.handle.net/2003/30569 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-10749 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB 823;31/2013 | |
dc.subject | estimation of the integrated volatility | en |
dc.subject | fractional Lévy processes | en |
dc.subject | infinitely divisible distributions | en |
dc.subject | limit theorems | en |
dc.subject | power variation | en |
dc.subject.ddc | 310 | |
dc.subject.ddc | 330 | |
dc.subject.ddc | 620 | |
dc.title | A law of large numbers for the power variation of fractional Lévy processes | en |
dc.type | Text | de |
dc.type.publicationtype | workingPaper | de |
dcterms.accessRights | open access |