A note on nonparametric estimation of bivariate tail dependence

dc.contributor.authorBücher, Axel
dc.date.accessioned2012-07-16T16:52:19Z
dc.date.available2012-07-16T16:52:19Z
dc.date.issued2012-07-16
dc.description.abstractNonparametric estimation of tail dependence can be based on a standardization of the marginals if their cumulative distribution functions are known. In this paper it is shown to be asymptotically more efficient if the additional knowledge of the marginals is ignored and estimators are based on ranks. The discrepancy between the two estimators is shown to be substantial for the popular Clayton model. A brief simulation study indicates that the asymptotic conclusions transfer to finite samples.en
dc.identifier.urihttp://hdl.handle.net/2003/29515
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14293
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;27/2012
dc.subjectasymptotic varianceen
dc.subjectnonparametric estimationen
dc.subjectrank-based inferenceen
dc.subjecttail copulaen
dc.subjecttail dependenceen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleA note on nonparametric estimation of bivariate tail dependenceen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2712_SFB823_buecher.pdf
Size:
415.01 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: