Asymptotics of improved generalized moments estimators for spatial autoregressive error models

dc.contributor.authorArnold, Matthias
dc.contributor.authorDrinkuth, Carsten
dc.date.accessioned2013-06-20T15:44:23Z
dc.date.available2013-06-20T15:44:23Z
dc.date.issued2013-06-20
dc.description.abstractThis paper considers linear models with a spatial autoregressive error structure. Extending Arnold and Wied (2010), who develop an improved GMM estimator for the parameters of the disturbance process to reduce the bias of existing estimation approaches, we establish the asymptotic normality of a new weighted version of this improved estimator and derive the efficient weighting matrix. We also show that this efficiently weighted GMM estimator is feasible as long as the regression matrix of the underlying linear model is non-stochastic and illustrate the performance of the new estimator by a Monte Carlo simulation and an application to real data.en
dc.identifier.urihttp://hdl.handle.net/2003/30403
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5483
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;22/2013en
dc.subjectAsymptotic normalityen
dc.subjectGMM estimationen
dc.subjectRegression residualsen
dc.subjectSpatial autoregressionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleAsymptotics of improved generalized moments estimators for spatial autoregressive error modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2213_SFB823_Drinkuth_Arnold.pdf
Size:
299.57 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: