On a Strategy to Develop Robust and Simple Tariffs from Motor Vehicle Insurance Data
dc.contributor.author | Christmann, Andreas | de |
dc.date.accessioned | 2004-12-06T18:38:50Z | |
dc.date.available | 2004-12-06T18:38:50Z | |
dc.date.issued | 2004 | de |
dc.description.abstract | The goals of this paper are twofold: we describe common features in data sets from motor vehicle insurance companies and we investigate a general strategy which exploits the knowledge of such features. The results of the strategy are a basis to develop insurance tariffs. The strategy is applied to a data set from motor vehicle insurance companies. We use a nonparametric approach based on a combination of kernel logistic regression and e-support vector regression. | en |
dc.format.extent | 2783551 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/2003/4872 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15069 | |
dc.language.iso | en | de |
dc.publisher | Universitätsbibliothek Dortmund | de |
dc.subject | data mining | en |
dc.subject | insurance tariffs | en |
dc.subject | kernel logistic regression | en |
dc.subject | machine learning | en |
dc.subject | regression | en |
dc.subject | robustness | en |
dc.subject | simplicity | en |
dc.subject | support vector machine | en |
dc.subject | support vector regression | en |
dc.subject.ddc | 310 | de |
dc.title | On a Strategy to Develop Robust and Simple Tariffs from Motor Vehicle Insurance Data | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1