Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfaces
dc.contributor.author | Sokolov, Andriy | |
dc.contributor.author | Davydov, Oleg | |
dc.contributor.author | Turek, Stefan | |
dc.date.accessioned | 2017-12-04T13:45:14Z | |
dc.date.available | 2017-12-04T13:45:14Z | |
dc.date.issued | 2017-11 | |
dc.description.abstract | In this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ (t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models. | en |
dc.identifier.issn | 2190-1767 | |
dc.identifier.uri | http://hdl.handle.net/2003/36231 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-18245 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Ergebnisberichte des Instituts für Angewandte Mathematik;579 | de |
dc.subject | radial basis functions | en |
dc.subject | finite differences | en |
dc.subject | evolving surfaces | en |
dc.subject | level set | en |
dc.subject | surface PDEs | |
dc.subject.ddc | 610 | |
dc.subject.rswk | Radiale Basisfunktion | de |
dc.subject.rswk | Finite-Differenzen-Methode | de |
dc.subject.rswk | Partielle Differentialgleichung | de |
dc.title | Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfaces | en |
dc.type | Text | |
dc.type.publicationtype | preprint | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false |