Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfaces

dc.contributor.authorSokolov, Andriy
dc.contributor.authorDavydov, Oleg
dc.contributor.authorTurek, Stefan
dc.date.accessioned2017-12-04T13:45:14Z
dc.date.available2017-12-04T13:45:14Z
dc.date.issued2017-11
dc.description.abstractIn this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ (t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/36231
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18245
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;579de
dc.subjectradial basis functionsen
dc.subjectfinite differencesen
dc.subjectevolving surfacesen
dc.subjectlevel seten
dc.subjectsurface PDEs
dc.subject.ddc610
dc.subject.rswkRadiale Basisfunktionde
dc.subject.rswkFinite-Differenzen-Methodede
dc.subject.rswkPartielle Differentialgleichungde
dc.titleNumerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfacesen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 579.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: