Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

Online Gauß-Prozesse zur Regression auf FPGAs

Loading...
Thumbnail Image

Date

2016-01

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

FPGAs köonnen als eine schnelle und energiesparende Ausführungsplattform genutzt werden, welche jedoch keinerlei Laufzeitumgebung für Dateiabstraktionen oder Peripheriezugriffe anbietet. Aus diesem Grund muss neben der eigentlichen Implementierung auch der Entwurf des umliegenden Systems erfolgen. Dieser Systementwurf hat sich mit der dritten Generation der verf ̈ ugbaren Werkzeuguntersützung für FPGAs stark gewandelt, wodurch sich Unterschiede zu der vorhandenen Literatur ergeben. Das Entwurfsvorgehen für die aktuelle FPGA- und Werkzeuggeneration soll zunächst vorgestellt werden, um darauf aufbauend eine passende Laufzeitumgebung für maschinelle Lernalgorithmen auf dem FPGA zu entwerfen. Hierbei soll eine möglichst modulare und energiesparende Systemarchitektur entworfen werden, sodass sich die hier vorgestellte Systemarchitektur gut in eingebettete System anwenden lässt und zusätzlich der maschinelle Lernalgorithmus wegen der Modularität des Systems einfach ausgetauscht werden kann. Anschließend soll eine beispielhafte Umsetzung eines Gauß-Prozesses auf dem FPGA die Einbettung in das Gesamtsystem zeigen, wobei hier Wert auf eine möglichst hohe Geschwindigkeit der Hardwareimplementierung gelegt werden soll. Die Umsetzung einer energiesparenden Systemarchitektur für verschiedene maschinelle Lernalgorithmen ist nach Wissen des Autors neu, da in der vorhandenen Literatur jeweils ein neues System für einen anderen Algorithmus entworfen wird. Des Weiteren ist Umsetzung von Gauß-Prozessen auf FPGAs ist nach Wissen des Autors ebenfalls neu, sodass ich hier weitere Unterschiede zur vorhanden Literatur ergeben.

Description

Table of contents

Keywords

FPGA

Citation