Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

Analysis of the (1+1) EA for a Dynamically Changing Objective Function

Loading...
Thumbnail Image

Date

2001-10-30

Journal Title

Journal ISSN

Volume Title

Publisher

Universität Dortmund

Abstract

Evolutionary algorithms (EAs) are a class of randomized search heuristics, that are often successfully used for black-box optimization. Nevertheless, there are only few theoretical results about EAs, which are furthermore limited to static objective functions, i. e. functions that do not change over time, despite of the practical relevance of dynamic optimization. Here, the runtime of a simple EA, the (1+1) EA, is theoretically analyzed for a dynamically changing objective function. The main focus lies on determining the degree of change of the fitness funcion, where the expected runtime of the (1+1) EA changes from polynomially to super-polynomially. The proofs presented show methods how to analyze EAs with dynamically changing objective functions.

Description

Table of contents

Keywords

Citation