Analysis of the (1+1) EA for a Dynamically Changing Objective Function

dc.contributor.authorDroste, Stefande
dc.date.accessioned2004-12-07T08:20:53Z
dc.date.available2004-12-07T08:20:53Z
dc.date.created2001de
dc.date.issued2001-10-30de
dc.description.abstractEvolutionary algorithms (EAs) are a class of randomized search heuristics, that are often successfully used for black-box optimization. Nevertheless, there are only few theoretical results about EAs, which are furthermore limited to static objective functions, i. e. functions that do not change over time, despite of the practical relevance of dynamic optimization. Here, the runtime of a simple EA, the (1+1) EA, is theoretically analyzed for a dynamically changing objective function. The main focus lies on determining the degree of change of the fitness funcion, where the expected runtime of the (1+1) EA changes from polynomially to super-polynomially. The proofs presented show methods how to analyze EAs with dynamically changing objective functions.en
dc.format.extent147016 bytes
dc.format.extent328799 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5412
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-7849
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 113de
dc.subject.ddc004de
dc.titleAnalysis of the (1+1) EA for a Dynamically Changing Objective Functionen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ci113.pdf
Size:
143.57 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
ci113.ps
Size:
321.09 KB
Format:
Postscript Files