Optimal control of an abstract evolution variational inequality with application to homogenized plasticity

dc.contributor.authorMeinlschmidt, Hannes
dc.contributor.authorMeyer, Christian
dc.contributor.authorWalther, Stephan
dc.date.accessioned2019-10-02T14:29:49Z
dc.date.available2019-10-02T14:29:49Z
dc.date.issued2019-09
dc.description.abstractThe paper is concerned with an optimal control problem governed by a state equa-tion in form of a generalized abstract operator differential equation involving a maximal monotoneoperator. The state equation is uniquely solvable, but the associated solution operator is in generalnot Gˆateaux-differentiable. In order to derive optimality conditions, we therefore regularize the stateequation and its solution operator, respectively, by means of a (smoothed) Yosida approximation.We show convergence of global minimizers for regularization parameter tending to zero and derivenecessary and sufficient optimality conditions for the regularized problems. The paper ends with anapplication of the abstract theory to optimal control of homogenized quasi-static elastoplasticity.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/38261
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20231
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;615
dc.subjectoptimal control of operator differential equationsen
dc.subjectYosida approximationen
dc.subjectnecessary and sufficient optimality conditionsen
dc.subjecthomogenized plasticityen
dc.subjectevolution variational inequalityen
dc.subject.ddc610
dc.titleOptimal control of an abstract evolution variational inequality with application to homogenized plasticityen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 615.pdf
Size:
600.64 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: