Bayesian optimization of gray-box process models using a modified upper confidence bound acquisition function
Loading...
Date
2024-12-19
Journal Title
Journal ISSN
Volume Title
Publisher
Alternative Title(s)
Abstract
Optimizing complex process models can be challenging due to the computation time required to solve the model equations. A popular technique is to replace difficult-to-evaluate submodels with surrogate models, creating a gray-box process model. Bayesian optimization (BO) is effective for global optimization with minimal function evaluations. However, existing extensions of BO to gray-box models rely on Monte Carlo (MC) sampling, which requires preselecting the number of MC samples, adding complexity. In this paper, we present a novel BO approach for gray-box process models that uses sensitivities instead of MC and can be used to exploit decoupled problems, where multiple submodels can be evaluated independently. The new approach is successfully applied to six benchmark test problems and to a realistic chemical process design problem. It is shown that the proposed methodology is more efficient than other methods and that exploiting the decoupled case additionally reduces the number of required submodel evaluations.
Description
Table of contents
Keywords
Bayesian optimization, Surrogate modeling, Gray-box modeling, Process optimization
