Malmquist-type theorems for cubic Hamiltonians
dc.contributor.author | Steinmetz, Norbert | |
dc.date.accessioned | 2021-03-26T08:08:39Z | |
dc.date.available | 2021-03-26T08:08:39Z | |
dc.date.issued | 2021-02-06 | |
dc.description.abstract | The aim of this paper is to classify the cubic polynomials H(z,x,y)=∑j+k≤3ajk(z)xjyk over the field of algebraic functions such that the corresponding Hamiltonian system x′=Hy, y′=−Hx has at least one transcendental algebroid solution. Ignoring trivial subcases, the investigations essentially lead to several non-trivial Hamiltonians which are closely related to Painlevé’s equations PI, PII, P34, and PIV . Up to normalisation of the leading coefficients, common Hamiltonians are HI:HII/34:HIV:−2y3+12x2−zyx2y−12y2+12zy+κxx2y+xy2+2zxy+2κx+2λy13(x3+y3)+zxy+κx+λy, but the zoo of non-equivalent Hamiltonians turns out to be much larger. | en |
dc.identifier.uri | http://hdl.handle.net/2003/40110 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-21987 | |
dc.language.iso | en | de |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Hamiltonian system | en |
dc.subject | Painlevé differential equation | en |
dc.subject | Painlevé property | en |
dc.subject | Malmquist property | en |
dc.subject | Algebroid function | en |
dc.subject.ddc | 520 | |
dc.title | Malmquist-type theorems for cubic Hamiltonians | en |
dc.type | Text | de |
dc.type.publicationtype | article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Steinmetz, N. Malmquist-Type Theorems for Cubic Hamiltonians. Comput. Methods Funct. Theory (2021). | de |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s40315-020-00356-3 | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Steinmetz2021_Article_Malmquist-TypeTheoremsForCubic.pdf
- Size:
- 305.42 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: