Malmquist-type theorems for cubic Hamiltonians

dc.contributor.authorSteinmetz, Norbert
dc.date.accessioned2021-03-26T08:08:39Z
dc.date.available2021-03-26T08:08:39Z
dc.date.issued2021-02-06
dc.description.abstractThe aim of this paper is to classify the cubic polynomials H(z,x,y)=∑j+k≤3ajk(z)xjyk over the field of algebraic functions such that the corresponding Hamiltonian system x′=Hy, y′=−Hx has at least one transcendental algebroid solution. Ignoring trivial subcases, the investigations essentially lead to several non-trivial Hamiltonians which are closely related to Painlevé’s equations PI, PII, P34, and PIV . Up to normalisation of the leading coefficients, common Hamiltonians are HI:HII/34:HIV:−2y3+12x2−zyx2y−12y2+12zy+κxx2y+xy2+2zxy+2κx+2λy13(x3+y3)+zxy+κx+λy, but the zoo of non-equivalent Hamiltonians turns out to be much larger.en
dc.identifier.urihttp://hdl.handle.net/2003/40110
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21987
dc.language.isoende
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectHamiltonian systemen
dc.subjectPainlevé differential equationen
dc.subjectPainlevé propertyen
dc.subjectMalmquist propertyen
dc.subjectAlgebroid functionen
dc.subject.ddc520
dc.titleMalmquist-type theorems for cubic Hamiltoniansen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationSteinmetz, N. Malmquist-Type Theorems for Cubic Hamiltonians. Comput. Methods Funct. Theory (2021).de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s40315-020-00356-3de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Steinmetz2021_Article_Malmquist-TypeTheoremsForCubic.pdf
Size:
305.42 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: