Lokale Eigenschaften von Gittern mit einem Automorphismus

dc.contributor.advisorScharlau, Rudolf
dc.contributor.authorHöppner, Stefan
dc.contributor.refereeHoffmann, Detlev
dc.date.accepted2016-03-30
dc.date.accessioned2016-04-15T08:18:57Z
dc.date.available2016-04-15T08:18:57Z
dc.date.issued2016-01
dc.description.abstractIn dieser Arbeit werden Z-Gitter mit einem fest gewählten Automorphismus der Ordnung m untersucht. Dazu wird im ersten Kapitel zunächst ein Zusammenhang zu hermiteschen Gittern über dem Gruppenring hergeleitet. Anschließend wird damit unter der Voraussetzung, dass p nicht m teilt, eine p-modulare Zerlegung konstruiert, bei der jede Komponente invariant unter dem Automorphismus ist. Abschließend wird der Fall, bei dem p die Ordnung m teilt, untersucht. Für p gleich m wird als Hauptresultat der Arbeit eine orthogonale Zerlegung von hermiteschen ZpG-Gittern konstruiert und es werden die auftretenden Modultypen der orthogonal unzerlegbaren Summanden bestimmt. Im zweiten Abschnitt werden hermitesche Gitter mit einer Struktur über dem Ganzheitsring eines Kreisteilungskörpers betrachtet und die Invarianten ihrer Spurgitter berechnet. Diese Ergebnisse erlauben den Ausschluss von Gittern mit einem Automorphismus eines vorgegeben Typs im gesamten Geschlecht. Abschließend wird die Idealgitterkonstruktion von Bayer-Fluckiger modifiziert um gezielt Gitter mit einem Automorphismus in einem vorgegeben Geschlecht zu konstruieren.de
dc.description.abstractIn this work, Z-lattices with a fixed automorphism of order m are investigated. The first chapter begins with the connection of such lattices to hermitian lattices over the group ring. Under the assumption that p does not divide m, a p-modular decomposition is constructed in which each component is invariant under the automorphism. Finally, the case where p divides m is investigated. The main result is the construction of an orthogonal decomposition of hermitian ZpG-lattices for p equals m. The module types of orthogonal indecomposable lattices are determined. In the second chapter, the invariants of Z-lattices with an additional hermitian structure over the ring of cyclotomic integers are calculated. These results allow the exclusion of lattices with an automorphism of a given type in the entire genus. Finally, the ideal lattice construction of Bayer-Fluckiger is modified to construct a lattice with an automorphism in a given genus.de
dc.identifier.urihttp://hdl.handle.net/2003/34892
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-16940
dc.language.isodede
dc.subjectGitterde
dc.subjectGruppenringde
dc.subjectAutomorphismusde
dc.subjectKreisteilungskörperde
dc.subjectZerlegungde
dc.subject.ddc510
dc.subject.rswkGitter <Mathematik>de
dc.subject.rswkAutomorphismusde
dc.subject.rswkZerlegung <Mathematik>de
dc.titleLokale Eigenschaften von Gittern mit einem Automorphismusde
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation.pdf
Size:
770.87 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: