Quasi-optimal and pressure robust discretizations of the stokes equations by moment- and divergence-preserving operators

dc.contributor.authorKreuzer, Christian
dc.contributor.authorVerfürth, Rüdiger
dc.contributor.authorZanotti, Pietro
dc.date.accessioned2020-03-05T14:29:14Z
dc.date.available2020-03-05T14:29:14Z
dc.date.issued2020-02
dc.description.abstractWe approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the discretization is well-defined for any load which is admissible for the continuous problem and it also provides classical quasioptimal estimates for the sum of velocity and pressure errors. The key design principle is a careful discretization of the load involving a linear operator, which maps discontinuous Galerkin test functions onto conforming ones thereby preserving the discrete divergence and certain moment conditions on faces and elements.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/39037
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20956
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;625
dc.subject.ddc610
dc.titleQuasi-optimal and pressure robust discretizations of the stokes equations by moment- and divergence-preserving operatorsen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 625.pdf
Size:
587.07 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: